Properties

Label 3024.bo.28.a1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times A_4$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{2}d^{7}, d^{7}, b^{2}c^{3}, c^{2}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3:S_4\times F_7$
Order: \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_3:S_3:S_4$
$\operatorname{Aut}(H)$ $S_4\times C_3^2:\GL(2,3)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\operatorname{res}(S)$$S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_6^2:D_6$
Normal closure:$A_4\times C_{21}:C_3$
Core:$C_3\times A_4$
Minimal over-subgroups:$A_4\times C_{21}:C_3$$C_6^2:C_6$$C_3^2:S_4$$C_3^2:S_4$
Maximal under-subgroups:$C_3\times A_4$$C_6^2$$C_3\times A_4$$C_3\times A_4$$C_3\times A_4$$C_3\times A_4$$C_3\times A_4$$C_3\times A_4$$C_3\times A_4$$C_3^3$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-2$
Projective image$C_3:S_4\times F_7$