Properties

Label 28449792.b.72.A
Order $ 2^{7} \cdot 3^{2} \cdot 7^{3} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(395136\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{3} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: not computed
Generators: $\langle(17,24,21,22,20,19,23), (1,5)(2,6)(3,7)(4,8)(17,18)(19,24)(20,23)(21,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2^9.C_7^3:C_3\wr S_3$
Order: \(28449792\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 7^{3} \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_7^3:C_3\wr S_3$, of order \(28449792\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^6.C_7^3.C_3.C_6$
Normal closure:$C_2^9.C_7^3:C_3\wr S_3$
Core:$C_1$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^9.C_7^3:C_3\wr S_3$