Properties

Label 28449792.b
Order \( 2^{10} \cdot 3^{4} \cdot 7^{3} \)
Exponent \( 2^{2} \cdot 3^{2} \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{4} \cdot 7^{3} \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $24$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,20,9,8,19,14,6,24,12)(2,17,15)(3,22,16,4,18,13,5,21,10)(7,23,11), (1,22,6,24,4,23)(2,21,8,18,5,19)(3,17)(7,20)(9,12,14,10,11,16,15) >;
 
Copy content gap:G := Group( (1,20,9,8,19,14,6,24,12)(2,17,15)(3,22,16,4,18,13,5,21,10)(7,23,11), (1,22,6,24,4,23)(2,21,8,18,5,19)(3,17)(7,20)(9,12,14,10,11,16,15) );
 
Copy content sage:G = PermutationGroup(['(1,20,9,8,19,14,6,24,12)(2,17,15)(3,22,16,4,18,13,5,21,10)(7,23,11)', '(1,22,6,24,4,23)(2,21,8,18,5,19)(3,17)(7,20)(9,12,14,10,11,16,15)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(68015187499931590765935408179349185084312479834667322086194879748608595226425597603658813316428358156577506433867877052673784981906637178269492457321282669567763856440270431263324279368907271027566658108434690041933568271285418809185145468394617019854112402132712014468754821071741782776875008545571207143183560638002546772122391406104296279746273903452091424286267346836855028263109513428186214055821541755544764570912219295217811687777838107369249870792187999079484297370871209513181904397292582116773382194486263721522745134357710940168958866299243008625642672726776038603997598316894734697244017937651997916680967039921468108705225922013700092152300463553588021605182774726265286336724202405732087873774767503064954922496689510366751910548802767711535700297003228107749029774676063564392739779421328696131119609088052554521361236224,28449792)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17;
 

Group information

Description:$C_2^9.C_7^3:C_3\wr S_3$
Order: \(28449792\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 7^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^9.C_7^3:C_3\wr S_3$, of order \(28449792\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 7^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$ x 4, $C_7$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 9 12 14 18 21 28 42 84
Elements 1 4543 241640 28224 5380760 117648 3161088 3782016 1436400 3161088 3564288 169344 6048000 1354752 28449792
Conjugacy classes   1 5 10 2 60 9 2 16 17 2 18 2 44 4 192
Divisions 1 5 6 2 32 5 1 8 9 1 6 1 12 1 90
Autjugacy classes 1 5 10 2 60 9 2 16 17 2 18 2 44 4 192

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 9 18 21 27 36 42 54 72 81 84 108 126 147 162 189 252 294 343 378 441 504 588 686 756 882 1029 1372 1764 2058 3528
Irr. complex chars.   6 3 12 0 1 12 6 18 16 0 9 5 0 4 0 0 18 18 0 12 0 9 6 3 12 0 0 3 0 6 12 0 0 1 0 192
Irr. rational chars. 2 3 0 1 7 0 2 2 0 3 9 5 1 0 4 4 0 2 2 0 1 9 2 3 0 4 4 3 3 2 0 1 3 7 1 90

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 21 21 21
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid b^{3}=d^{21}=e^{7}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 3, 3, 3, 3, 7, 7, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 34, 359162928, 1167809528, 162443485, 115195539, 294226976, 14868169, 2099214, 1388263354, 678871476, 360827843, 117380380, 327, 1381125497, 1442297362, 156151839, 152400908, 2984446464, 1236462026, 411051982, 55485354, 175004, 10939880, 2345901271, 824789976, 298728257, 21531442, 54004179, 14934116, 1760357, 398, 58296680, 750569677, 470905125, 39944075, 24213244, 9881139, 245601729, 1133546426, 377848843, 93412680, 46356527, 13994494, 76288, 104865, 2514583774, 155862657, 51954254, 9236365, 12315150, 1924325, 128394, 21073, 17163, 1927028891, 1269571996, 423190701, 115873694, 92573035, 16373544, 280001, 97234, 114387, 785925516, 122800889, 40933666, 20466873, 454898, 1061339, 216694, 40353, 23353, 462864793, 2803638126, 304168331, 184411270, 77144211, 37306836, 3696969, 263360, 166749, 283386614, 1261070401, 69272362, 21166629, 314293, 59055, 1738104495, 3838943840, 272051185, 140223954, 116713379, 34799508, 5451269, 377126, 36327, 5042392252, 3926321376, 1306097402, 385405843, 125792247, 11399706, 1883531, 671771, 429028]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.3, G.4, G.5, G.7, G.8, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "a2", "b", "c", "d", "d3", "e", "f", "f2", "g", "h", "i", "j", "k", "l", "m", "n"]);
 
Copy content gap:G := PcGroupCode(68015187499931590765935408179349185084312479834667322086194879748608595226425597603658813316428358156577506433867877052673784981906637178269492457321282669567763856440270431263324279368907271027566658108434690041933568271285418809185145468394617019854112402132712014468754821071741782776875008545571207143183560638002546772122391406104296279746273903452091424286267346836855028263109513428186214055821541755544764570912219295217811687777838107369249870792187999079484297370871209513181904397292582116773382194486263721522745134357710940168958866299243008625642672726776038603997598316894734697244017937651997916680967039921468108705225922013700092152300463553588021605182774726265286336724202405732087873774767503064954922496689510366751910548802767711535700297003228107749029774676063564392739779421328696131119609088052554521361236224,28449792); a := G.1; b := G.3; c := G.4; d := G.5; e := G.7; f := G.8; g := G.10; h := G.11; i := G.12; j := G.13; k := G.14; l := G.15; m := G.16; n := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(68015187499931590765935408179349185084312479834667322086194879748608595226425597603658813316428358156577506433867877052673784981906637178269492457321282669567763856440270431263324279368907271027566658108434690041933568271285418809185145468394617019854112402132712014468754821071741782776875008545571207143183560638002546772122391406104296279746273903452091424286267346836855028263109513428186214055821541755544764570912219295217811687777838107369249870792187999079484297370871209513181904397292582116773382194486263721522745134357710940168958866299243008625642672726776038603997598316894734697244017937651997916680967039921468108705225922013700092152300463553588021605182774726265286336724202405732087873774767503064954922496689510366751910548802767711535700297003228107749029774676063564392739779421328696131119609088052554521361236224,28449792)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(68015187499931590765935408179349185084312479834667322086194879748608595226425597603658813316428358156577506433867877052673784981906637178269492457321282669567763856440270431263324279368907271027566658108434690041933568271285418809185145468394617019854112402132712014468754821071741782776875008545571207143183560638002546772122391406104296279746273903452091424286267346836855028263109513428186214055821541755544764570912219295217811687777838107369249870792187999079484297370871209513181904397292582116773382194486263721522745134357710940168958866299243008625642672726776038603997598316894734697244017937651997916680967039921468108705225922013700092152300463553588021605182774726265286336724202405732087873774767503064954922496689510366751910548802767711535700297003228107749029774676063564392739779421328696131119609088052554521361236224,28449792)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17;
 
Permutation group:Degree $24$ $\langle(1,20,9,8,19,14,6,24,12)(2,17,15)(3,22,16,4,18,13,5,21,10)(7,23,11), (1,22,6,24,4,23)(2,21,8,18,5,19)(3,17)(7,20)(9,12,14,10,11,16,15)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,20,9,8,19,14,6,24,12)(2,17,15)(3,22,16,4,18,13,5,21,10)(7,23,11), (1,22,6,24,4,23)(2,21,8,18,5,19)(3,17)(7,20)(9,12,14,10,11,16,15) >;
 
Copy content gap:G := Group( (1,20,9,8,19,14,6,24,12)(2,17,15)(3,22,16,4,18,13,5,21,10)(7,23,11), (1,22,6,24,4,23)(2,21,8,18,5,19)(3,17)(7,20)(9,12,14,10,11,16,15) );
 
Copy content sage:G = PermutationGroup(['(1,20,9,8,19,14,6,24,12)(2,17,15)(3,22,16,4,18,13,5,21,10)(7,23,11)', '(1,22,6,24,4,23)(2,21,8,18,5,19)(3,17)(7,20)(9,12,14,10,11,16,15)'])
 
Transitive group: 24T24313 42T3074 42T3075 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_2^9$ . $(C_7^3:C_3\wr S_3)$ $(C_2^9.C_7^3.C_3^3)$ . $S_3$ $(C_2^9:(C_7^3:\He_3))$ . $C_6$ $(C_2^9.C_7^3:C_3^2:S_3)$ . $C_3$ all 8
Aut. group: $\Aut(C_2^9:(C_7^3:\He_3))$ $\Aut(C_2^9.C_7^3:C_3^2:S_3)$ $\Aut(C_2^{10}:(C_7^3:\He_3))$ $\Aut(C_2^9:(C_7^3:C_3\wr C_3))$ all 5

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{6} \simeq C_{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 10 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_2^9.C_7^3:C_3\wr S_3$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^9:(C_7^3:\He_3)$ $G/G' \simeq$ $C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_2^9.C_7^3:C_3\wr S_3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $C_7^3:C_3\wr S_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^9.C_7^3:C_3\wr S_3$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_7^3:C_3\wr S_3$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2\times C_2^6.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\wr C_3$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^3$

Subgroup diagram and profile

Series

Derived series $C_2^9.C_7^3:C_3\wr S_3$ $\rhd$ $C_2^9:(C_7^3:\He_3)$ $\rhd$ $C_2^9.C_7^3.C_3$ $\rhd$ $C_2^6.C_7^2\times F_8$ $\rhd$ $C_2^9$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^9.C_7^3:C_3\wr S_3$ $\rhd$ $C_2^9:(C_7^3:C_3\wr C_3)$ $\rhd$ $C_2^9:(C_7^3:\He_3)$ $\rhd$ $C_2^9.C_7^3.C_3^2$ $\rhd$ $C_2^9.C_7^3.C_3$ $\rhd$ $C_2^6.C_7^2\times F_8$ $\rhd$ $C_2^9$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^9.C_7^3:C_3\wr S_3$ $\rhd$ $C_2^9:(C_7^3:\He_3)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $192 \times 192$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $90 \times 90$ rational character table.