Properties

Label 279936.hj.27.C
Order $ 2^{7} \cdot 3^{4} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3.(S_3\times D_4)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(11,21)(13,16)(14,15)(18,20), (10,17)(11,21)(12,19)(14,15)(25,30,28), (5,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^3.S_3\wr S_3$
Order: \(279936\)\(\medspace = 2^{7} \cdot 3^{7} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_4^2.C_3.D_4^2$
$\operatorname{Aut}(H)$ $C_3^4.C_2^6.C_2^6$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_6^3.(S_3\times D_4)$
Normal closure:$C_6^3.S_3\wr S_3$
Core:$C_6^3$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_6^3.S_3\wr S_3$