Properties

Label 279936.hj.1.a1
Order $ 2^{7} \cdot 3^{7} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3.S_3\wr S_3$
Order: \(279936\)\(\medspace = 2^{7} \cdot 3^{7} \)
Index: $1$
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\langle(1,3,6)(2,7)(8,9)(10,17)(11,14,21,15)(12,19)(13,18,16,20)(22,26,27)(23,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is the radical (hence characteristic, normal, and solvable), a semidirect factor, nonabelian, and a Hall subgroup. Whether it is a direct factor or monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^3.S_3\wr S_3$
Order: \(279936\)\(\medspace = 2^{7} \cdot 3^{7} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_4^2.C_3.D_4^2$
$\operatorname{Aut}(H)$ $C_3^6.C_4^2.C_3.D_4^2$
$W$$C_6^3.S_3\wr S_3$, of order \(279936\)\(\medspace = 2^{7} \cdot 3^{7} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^3.S_3\wr S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^3.S_3\wr S_3$