Properties

Label 26244.fe.972.C
Order $ 3^{3} $
Index $ 2^{2} \cdot 3^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(3\)
Generators: $cdef^{2}g^{4}, dfg^{3}, g^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3^6:(C_6\times S_3)$
Order: \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3^3.S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.S_3^2$, of order \(472392\)\(\medspace = 2^{3} \cdot 3^{10} \)
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$W$$C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^6$
Normalizer:$C_3^6:(C_6\times S_3)$
Minimal over-subgroups:$C_3^4$$C_3^4$$C_3^4$$C_3\times \He_3$$C_3\times \He_3$$C_3\times \He_3$$C_3\wr C_3$$C_3\wr C_3$$S_3\times C_3^2$$C_3^2:C_6$$C_3^2:S_3$
Maximal under-subgroups:$C_3^2$$C_3^2$$C_3^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_3^6:(C_6\times S_3)$