Subgroup ($H$) information
Description: | $C_3^3$ |
Order: | \(27\)\(\medspace = 3^{3} \) |
Index: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
Exponent: | \(3\) |
Generators: |
$cdef^{2}g^{4}, dfg^{3}, g^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
Description: | $C_3^6:(C_6\times S_3)$ |
Order: | \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
Description: | $C_3^3.S_3^2$ |
Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Automorphism Group: | $C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^6.S_3^2$, of order \(472392\)\(\medspace = 2^{3} \cdot 3^{10} \) |
$\operatorname{Aut}(H)$ | $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \) |
$W$ | $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $2$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_3^6:(C_6\times S_3)$ |