Properties

Label 26244.fe.324.A
Order $ 3^{4} $
Index $ 2^{2} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(3\)
Generators: $cdefg, dfg^{3}, fg^{3}, g^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3^6:(C_6\times S_3)$
Order: \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3^3:D_6$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2\times \He_3:D_4$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.S_3^2$, of order \(472392\)\(\medspace = 2^{3} \cdot 3^{10} \)
$\operatorname{Aut}(H)$ $C_2.\PSL(4,3).C_2$
$W$$C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^6$
Normalizer:$C_3^6:(C_6\times S_3)$
Minimal over-subgroups:$C_3^5$$C_3^2\times \He_3$$C_3^5$$C_3^2\times \He_3$$C_3^2\times \He_3$$C_3^4:C_3$$C_3^4:C_3$$C_3^3:C_9$$C_3^3:C_9$$S_3\times C_3^3$$C_3^3:C_6$$C_3^3:S_3$
Maximal under-subgroups:$C_3^3$$C_3^3$$C_3^3$$C_3^3$$C_3^3$$C_3^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^6:(C_6\times S_3)$