Properties

Label 26244.fe.162.H
Order $ 2 \cdot 3^{4} $
Index $ 2 \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_3^3$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{3}, dfg^{3}, ceg, fg^{3}, g^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^6:(C_6\times S_3)$
Order: \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.S_3^2$, of order \(472392\)\(\medspace = 2^{3} \cdot 3^{10} \)
$\operatorname{Aut}(H)$ $S_3\times \GL(3,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \)
$W$$C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^4$
Normalizer:$C_3^5.C_6.C_2$
Normal closure:$C_3^5:S_3$
Core:$C_3^4$
Minimal over-subgroups:$S_3\times C_3^4$$C_3^4:C_6$$C_3^4:C_6$$C_3^4:C_6$$C_3^4:S_3$$C_3^2:S_3^2$
Maximal under-subgroups:$C_3^4$$C_3^2\times C_6$$S_3\times C_3^2$$S_3\times C_3^2$$S_3\times C_3^2$$S_3\times C_3^2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^6:(C_6\times S_3)$