Properties

Label 26244.fe.324.CB
Order $ 3^{4} $
Index $ 2^{2} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times \He_3$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(3\)
Generators: $a^{2}b^{2}d^{2}eg^{6}, c^{2}d^{2}e^{2}f^{2}g^{5}, dfg^{3}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^6:(C_6\times S_3)$
Order: \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.S_3^2$, of order \(472392\)\(\medspace = 2^{3} \cdot 3^{10} \)
$\operatorname{Aut}(H)$ $C_3^4:(S_3\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$W$$S_3\times C_3^2$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3^3$
Normalizer:$C_3^5:C_6$
Normal closure:$C_3^6.C_3$
Core:$C_3^3$
Minimal over-subgroups:$C_3^2\times \He_3$$C_3^4:C_3$$S_3\times \He_3$
Maximal under-subgroups:$C_3^3$$C_3^3$$\He_3$$\He_3$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_3^6:(C_6\times S_3)$