Properties

Label 25920.a.4320.d1.a1
Order $ 2 \cdot 3 $
Index $ 2^{5} \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ \end{array}\right), \left(\begin{array}{llll}0 & \alpha & 0 & 1 \\ \alpha^{2} & \alpha^{2} & 1 & \alpha \\ 0 & \alpha^{2} & 0 & 1 \\ \alpha & 0 & 1 & \alpha \\ \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Ambient group ($G$) information

Description: $\SU(4,2)$
Order: \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SO(5,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3\times S_3$
Normalizer:$C_3\times S_3^2$
Normal closure:$\SU(4,2)$
Core:$C_1$
Minimal over-subgroups:$S_4$$C_3\times S_3$$C_3\times S_3$$C_3\times S_3$$D_6$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this conjugacy class$240$
Möbius function$-18$
Projective image$\SU(4,2)$