Properties

Label 25920.a.25920.a1.a1
Order $ 1 $
Index $ 2^{6} \cdot 3^{4} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, the Fitting subgroup, the radical, a direct factor, cyclic (hence elementary (for every $p$), hyperelementary, metacyclic, and a Z-group), stem, a $p$-group (for every $p$), and perfect.

Ambient group ($G$) information

Description: $C(2,3)$
Order: \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Quotient group ($Q$) structure

Description: $C(2,3)$
Order: \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Automorphism Group: $\SO(5,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $0$

The quotient is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\SO(5,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C(2,3)$
Normalizer:$C(2,3)$
Complements:$C(2,3)$
Minimal over-subgroups:$C_5$$C_3$$C_3$$C_3$$C_2$$C_2$

Other information

Möbius function$-25920$
Projective image$C(2,3)$