Properties

Label 25920.a.240.a1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{4} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times S_3^2$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{llll}0 & 0 & \alpha^{2} & 0 \\ \alpha & 0 & 1 & \alpha \\ \alpha & 0 & 0 & 0 \\ 1 & \alpha^{2} & \alpha^{2} & 0 \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{2} & \alpha^{2} & \alpha & \alpha \\ 0 & 0 & \alpha & \alpha \\ 0 & \alpha & \alpha & 1 \\ 0 & 0 & 0 & \alpha^{2} \\ \end{array}\right), \left(\begin{array}{llll}1 & \alpha^{2} & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & \alpha^{2} & \alpha \\ \alpha^{2} & \alpha & \alpha & \alpha^{2} \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{2} & \alpha^{2} & \alpha^{2} & 0 \\ 0 & \alpha & 0 & \alpha \\ 0 & 0 & \alpha & \alpha \\ 0 & 0 & 0 & \alpha^{2} \\ \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $\SU(4,2)$
Order: \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SO(5,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$S_3^2:S_3$
Normal closure:$\SU(4,2)$
Core:$C_1$
Minimal over-subgroups:$S_3^2:S_3$
Maximal under-subgroups:$S_3\times C_3^2$$C_3^2:C_6$$C_6\times S_3$$S_3^2$

Other information

Number of subgroups in this conjugacy class$120$
Möbius function$0$
Projective image$\SU(4,2)$