Properties

Label 25920.a.40.a1.a1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\Unitary(3,2)$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\left(\begin{array}{llll}\alpha & \alpha^{2} & 1 & \alpha^{2} \\ 0 & 0 & \alpha^{2} & \alpha \\ 0 & \alpha^{2} & \alpha^{2} & \alpha^{2} \\ 0 & 0 & 0 & \alpha \\ \end{array}\right), \left(\begin{array}{llll}\alpha & 0 & \alpha^{2} & \alpha \\ \alpha & \alpha^{2} & \alpha^{2} & 0 \\ 0 & \alpha^{2} & \alpha^{2} & \alpha \\ \alpha & \alpha^{2} & 0 & \alpha \\ \end{array}\right), \left(\begin{array}{llll}0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & \alpha^{2} & \alpha^{2} \\ \alpha^{2} & \alpha & \alpha & 0 \\ \end{array}\right), \left(\begin{array}{llll}0 & \alpha^{2} & \alpha^{2} & 1 \\ 0 & \alpha & \alpha & 1 \\ \alpha & 1 & 0 & \alpha \\ \alpha^{2} & 1 & 0 & \alpha^{2} \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{2} & 1 & 1 & 0 \\ \alpha^{2} & 1 & \alpha^{2} & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{2} & \alpha & \alpha^{2} & \alpha \\ \alpha^{2} & \alpha & 1 & 1 \\ 1 & 1 & \alpha^{2} & \alpha \\ 1 & 1 & \alpha & \alpha^{2} \\ \end{array}\right), \left(\begin{array}{llll}\alpha & \alpha^{2} & \alpha^{2} & 0 \\ 0 & \alpha^{2} & 0 & \alpha \\ 0 & 0 & \alpha^{2} & \alpha \\ 0 & 0 & 0 & \alpha \\ \end{array}\right)$ Copy content Toggle raw display
Derived length: $5$

The subgroup is maximal, nonabelian, and solvable.

Ambient group ($G$) information

Description: $\SU(4,2)$
Order: \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 40T14344.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SO(5,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_3^3:\GL(2,3)$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$W$$\PU(3,2)$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$\Unitary(3,2)$
Normal closure:$\SU(4,2)$
Core:$C_1$
Minimal over-subgroups:$\SU(4,2)$
Maximal under-subgroups:$\SU(3,2)$$C_3\wr S_3$$C_3\times \SL(2,3)$

Other information

Number of subgroups in this conjugacy class$40$
Möbius function$-1$
Projective image$\SU(4,2)$