Subgroup ($H$) information
Description: | $\Unitary(3,2)$ |
Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$\left(\begin{array}{llll}\alpha & \alpha^{2} & 1 & \alpha^{2} \\ 0 & 0 & \alpha^{2} & \alpha \\ 0 & \alpha^{2} & \alpha^{2} & \alpha^{2} \\ 0 & 0 & 0 & \alpha \\ \end{array}\right), \left(\begin{array}{llll}\alpha & 0 & \alpha^{2} & \alpha \\ \alpha & \alpha^{2} & \alpha^{2} & 0 \\ 0 & \alpha^{2} & \alpha^{2} & \alpha \\ \alpha & \alpha^{2} & 0 & \alpha \\ \end{array}\right), \left(\begin{array}{llll}0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & \alpha^{2} & \alpha^{2} \\ \alpha^{2} & \alpha & \alpha & 0 \\ \end{array}\right), \left(\begin{array}{llll}0 & \alpha^{2} & \alpha^{2} & 1 \\ 0 & \alpha & \alpha & 1 \\ \alpha & 1 & 0 & \alpha \\ \alpha^{2} & 1 & 0 & \alpha^{2} \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{2} & 1 & 1 & 0 \\ \alpha^{2} & 1 & \alpha^{2} & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{2} & \alpha & \alpha^{2} & \alpha \\ \alpha^{2} & \alpha & 1 & 1 \\ 1 & 1 & \alpha^{2} & \alpha \\ 1 & 1 & \alpha & \alpha^{2} \\ \end{array}\right), \left(\begin{array}{llll}\alpha & \alpha^{2} & \alpha^{2} & 0 \\ 0 & \alpha^{2} & 0 & \alpha \\ 0 & 0 & \alpha^{2} & \alpha \\ 0 & 0 & 0 & \alpha \\ \end{array}\right)$
|
Derived length: | $5$ |
The subgroup is maximal, nonabelian, and solvable.
Ambient group ($G$) information
Description: | $\SU(4,2)$ |
Order: | \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \) |
Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Derived length: | $0$ |
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Quotient set structure
Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 40T14344.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\SO(5,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_3^3:\GL(2,3)$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
$W$ | $\PU(3,2)$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Related subgroups
Centralizer: | $C_3$ | ||
Normalizer: | $\Unitary(3,2)$ | ||
Normal closure: | $\SU(4,2)$ | ||
Core: | $C_1$ | ||
Minimal over-subgroups: | $\SU(4,2)$ | ||
Maximal under-subgroups: | $\SU(3,2)$ | $C_3\wr S_3$ | $C_3\times \SL(2,3)$ |
Other information
Number of subgroups in this conjugacy class | $40$ |
Möbius function | $-1$ |
Projective image | $\SU(4,2)$ |