Properties

Label 25920.a.216.a1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_5$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}1 & 0 & 0 & 0 \\ \alpha^{2} & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ \alpha^{2} & \alpha^{2} & 1 & 1 \\ \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, almost simple, nonsolvable, and rational.

Ambient group ($G$) information

Description: $\SU(4,2)$
Order: \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SO(5,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_5$
Normal closure:$\SU(4,2)$
Core:$C_1$
Minimal over-subgroups:$S_6$
Maximal under-subgroups:$A_5$$S_4$$F_5$$D_6$

Other information

Number of subgroups in this conjugacy class$216$
Möbius function$0$
Projective image$\SU(4,2)$