Properties

Label 256.5035.8.o1.b1
Order $ 2^{5} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{16}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $ab, b^{4}c^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_{16}:C_8$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_4^3).D_4$, of order \(1024\)\(\medspace = 2^{10} \)
$\operatorname{Aut}(H)$ $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{16}$
Normalizer:$\OD_{32}:C_2$
Normal closure:$C_{16}.D_4$
Core:$C_{16}$
Minimal over-subgroups:$\OD_{32}:C_2$
Maximal under-subgroups:$C_{16}$$C_2\times C_8$$C_{16}$
Autjugate subgroups:256.5035.8.o1.a1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_2\times D_8$