Properties

Label 256.5035.2.b1.b1
Order $ 2^{7} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{16}.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(2\)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $ab, c, b^{6}c^{14}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_{16}:C_8$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_4^3).D_4$, of order \(1024\)\(\medspace = 2^{10} \)
$\operatorname{Aut}(H)$ $C_4^2.C_2^4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_4^2.C_2^4$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_8$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$D_{16}:C_8$
Complements:$C_2$
Minimal over-subgroups:$D_{16}:C_8$
Maximal under-subgroups:$D_8:C_4$$C_4\times C_{16}$$C_8.C_8$$\OD_{32}:C_2$$\OD_{32}:C_2$
Autjugate subgroups:256.5035.2.b1.a1

Other information

Möbius function$-1$
Projective image$C_2\times D_8$