Properties

Label 243.52.3.d1.d1
Order $ 3^{4} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3.\He_3$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(3\)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $\left(\begin{array}{rr} 25 & 26 \\ 3 & 19 \end{array}\right), \left(\begin{array}{rr} 19 & 12 \\ 0 & 19 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^2.C_3^3$
Order: \(243\)\(\medspace = 3^{5} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\operatorname{res}(S)$$C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$\He_3$, of order \(27\)\(\medspace = 3^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^2.C_3^3$
Complements:$C_3$ $C_3$ $C_3$ $C_3$ $C_3$ $C_3$ $C_3$
Minimal over-subgroups:$C_3^2.C_3^3$
Maximal under-subgroups:$\He_3$$C_3\times C_9$$C_9:C_3$$C_9:C_3$
Autjugate subgroups:243.52.3.d1.a1243.52.3.d1.b1243.52.3.d1.c1243.52.3.d1.e1243.52.3.d1.f1243.52.3.d1.g1243.52.3.d1.h1243.52.3.d1.i1

Other information

Möbius function$-1$
Projective image$C_3\times \He_3$