Properties

Label 243.52.9.b1.b1
Order $ 3^{3} $
Index $ 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rr} 25 & 26 \\ 3 & 19 \end{array}\right), \left(\begin{array}{rr} 10 & 0 \\ 0 & 19 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^2.C_3^3$
Order: \(243\)\(\medspace = 3^{5} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Exponent: \(3\)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(54\)\(\medspace = 2 \cdot 3^{3} \)
$W$$\He_3$, of order \(27\)\(\medspace = 3^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^2.C_3^3$
Minimal over-subgroups:$C_3\times \He_3$$C_3.\He_3$$C_3.\He_3$$C_3.\He_3$
Maximal under-subgroups:$C_3^2$$C_3^2$
Autjugate subgroups:243.52.9.b1.a1243.52.9.b1.c1

Other information

Möbius function$3$
Projective image$C_3\times \He_3$