Properties

Label 243.52.81.a1.a1
Order $ 3 $
Index $ 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(81\)\(\medspace = 3^{4} \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rr} 10 & 18 \\ 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3^2.C_3^3$
Order: \(243\)\(\medspace = 3^{5} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3.\He_3$
Order: \(81\)\(\medspace = 3^{4} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Automorphism Group: $C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Outer Automorphisms: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^2.C_3^3$
Normalizer:$C_3^2.C_3^3$
Complements:$C_3.\He_3$ $C_3.\He_3$ $C_3.\He_3$ $C_3.\He_3$ $C_3.\He_3$ $C_3.\He_3$ $C_3.\He_3$ $C_3.\He_3$ $C_3.\He_3$
Minimal over-subgroups:$C_3^2$$C_3^2$$C_3^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:243.52.81.a1.b1243.52.81.a1.c1

Other information

Möbius function$0$
Projective image$C_3.\He_3$