Properties

Label 24200.ba.25.a1
Order $ 2^{3} \cdot 11^{2} $
Index $ 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}:D_{22}$
Order: \(968\)\(\medspace = 2^{3} \cdot 11^{2} \)
Index: \(25\)\(\medspace = 5^{2} \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a^{5}, c^{55}, b^{2}, b^{11}, c^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_{110}:F_{11}$
Order: \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_5^2$
Order: \(25\)\(\medspace = 5^{2} \)
Exponent: \(5\)
Automorphism Group: $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Outer Automorphisms: $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}^2.C_{15}.C_5.C_{20}.C_2^3$
$\operatorname{Aut}(H)$ $S_4\times C_{11}^2.C_{10}.\PSL(2,11).C_2$
$W$$C_{11}:F_{11}$, of order \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_2\times C_{110}:F_{11}$
Complements:$C_5^2$
Minimal over-subgroups:$C_{110}:D_{22}$$C_{22}^2:C_{10}$
Maximal under-subgroups:$C_{11}:D_{22}$$C_{22}^2$$C_2\times D_{22}$$C_2\times D_{22}$$C_2\times D_{22}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$5$
Projective image$C_{55}:F_{11}$