Properties

Label 24200.ba.1210.a1
Order $ 2^{2} \cdot 5 $
Index $ 2 \cdot 5 \cdot 11^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $b^{11}, c^{22}, c^{55}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2\times C_{110}:F_{11}$
Order: \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{11}:F_{11}$
Order: \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $F_{11}^2$, of order \(12100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{2} \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}^2.C_{15}.C_5.C_{20}.C_2^3$
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{110}:F_{11}$
Normalizer:$C_2\times C_{110}:F_{11}$
Complements:$C_{11}:F_{11}$
Minimal over-subgroups:$C_2\times C_{110}$$C_2\times C_{110}$$C_2\times C_{110}$$C_{10}^2$$C_2^2\times C_{10}$
Maximal under-subgroups:$C_{10}$$C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$121$
Projective image$C_{11}:F_{11}$