Properties

Label 24200.ba.110.a1
Order $ 2^{2} \cdot 5 \cdot 11 $
Index $ 2 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{110}$
Order: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Index: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $b^{11}, c^{22}, c^{10}, c^{55}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2\times C_{110}:F_{11}$
Order: \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $F_{11}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}^2.C_{15}.C_5.C_{20}.C_2^3$
$\operatorname{Aut}(H)$ $D_6\times C_{20}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{110}:C_{110}$
Normalizer:$C_2\times C_{110}:F_{11}$
Complements:$F_{11}$
Minimal over-subgroups:$C_{22}\times C_{110}$$C_{10}\times C_{110}$$C_{10}\times D_{22}$
Maximal under-subgroups:$C_{110}$$C_2\times C_{22}$$C_2\times C_{10}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-11$
Projective image$C_{11}:F_{11}$