Subgroup ($H$) information
| Description: | $C_2\times C_{22}$ |
| Order: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| Index: | \(550\)\(\medspace = 2 \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Generators: |
$b^{11}, c^{10}, c^{55}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_2\times C_{110}:F_{11}$ |
| Order: | \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_5\times F_{11}$ |
| Order: | \(550\)\(\medspace = 2 \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Automorphism Group: | $F_5\times F_{11}$, of order \(2200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11 \) |
| Outer Automorphisms: | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{22}^2.C_{15}.C_5.C_{20}.C_2^3$ |
| $\operatorname{Aut}(H)$ | $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $55$ |
| Projective image | $C_{55}:F_{11}$ |