Properties

Label 24192.u.432.c1
Order $ 2^{3} \cdot 7 $
Index $ 2^{4} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{14}$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\langle(1,2)(3,5)(4,6)(7,10,14,8,15,9,13), (1,2), (3,5)(4,6), (3,6)(4,5)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $D_4\times \SL(2,8):C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_6\times \GL(3,2)$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$W$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{14}$
Normalizer:$C_2\times D_4\times F_7$
Normal closure:$C_2^3\times \SL(2,8)$
Core:$C_2^3$
Minimal over-subgroups:$C_2^3\times F_8$$C_2\times C_{14}:C_6$$C_2^2\times D_{14}$$C_{14}:D_4$$D_4\times C_{14}$
Maximal under-subgroups:$C_2\times C_{14}$$C_2\times C_{14}$$C_2\times C_{14}$$C_2^3$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$2$
Projective image$C_2^2\times {}^2G(2,3)$