Properties

Label 24192.u.36.b1
Order $ 2^{5} \cdot 3 \cdot 7 $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4\times F_7$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $\langle(1,2)(3,5)(4,6)(7,8)(9,14)(10,11)(12,15), (1,2), (3,5)(4,6), (3,6)(7,12,10)(8,15,11), (4,5), (3,6)(4,5), (3,4,6,5)(7,11,10,8,15,13,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $D_4\times \SL(2,8):C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $F_7\times C_2^5:D_4$, of order \(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \)
$W$$C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times D_4\times F_7$
Normal closure:$D_4\times \SL(2,8):C_6$
Core:$C_2\times D_4$
Minimal over-subgroups:$D_4\times \SL(2,8):C_6$
Maximal under-subgroups:$C_2^3\times F_7$$C_2^3:F_7$$C_2\times C_{28}:C_6$$D_{14}:C_{12}$$D_{28}:C_6$$D_4\times F_7$$D_4\times F_7$$D_4\times D_{14}$$C_{12}:C_2^3$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2^2\times {}^2G(2,3)$