Subgroup ($H$) information
Description: | $C_{84}$ |
Order: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Index: | \(28730\)\(\medspace = 2 \cdot 5 \cdot 13^{2} \cdot 17 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$\left[ \left(\begin{array}{rr}
19 & 27 \\
59 & 104
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
153 & 90 \\
122 & 105
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
141 & 143 \\
7 & 34
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
150 & 102 \\
134 & 12
\end{array}\right) \right]$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $\PSL(2,169)$ |
Order: | \(2413320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \) |
Exponent: | \(92820\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
Derived length: | $0$ |
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\PSL(2,169).C_2^2$, of order \(9653280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \) |
$\operatorname{Aut}(H)$ | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $14365$ |
Möbius function | $2$ |
Projective image | $\PSL(2,169)$ |