Properties

Label 2413320.a.28730._.A
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2 \cdot 5 \cdot 13^{2} \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{84}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(28730\)\(\medspace = 2 \cdot 5 \cdot 13^{2} \cdot 17 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $\left[ \left(\begin{array}{rr} 19 & 27 \\ 59 & 104 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 153 & 90 \\ 122 & 105 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 141 & 143 \\ 7 & 34 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 150 & 102 \\ 134 & 12 \end{array}\right) \right]$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\PSL(2,169)$
Order: \(2413320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
Exponent: \(92820\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,169).C_2^2$, of order \(9653280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
$\operatorname{Aut}(H)$ $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{84}$
Normalizer:$D_{84}$
Normal closure:$\PSL(2,169)$
Core:$C_1$
Minimal over-subgroups:$C_{13}^2:C_{84}$$D_{84}$
Maximal under-subgroups:$C_{42}$$C_{28}$$C_{12}$
Autjugate subgroups:2413320.a.1105._.A2413320.a.1105._.B2413320.a.2210._.A2413320.a.2210._.B2413320.a.15470._.A2413320.a.15470._.B2413320.a.28730._.B2413320.a.28730._.C2413320.a.30940._.A2413320.a.30940._.B2413320.a.40222._.A2413320.a.40222._.B2413320.a.46410._.A2413320.a.46410._.B2413320.a.57460._.A2413320.a.57460._.B2413320.a.57460._.C2413320.a.61880._.A2413320.a.61880._.B2413320.a.86190._.A2413320.a.86190._.B2413320.a.86190._.C2413320.a.92820._.A2413320.a.92820._.B2413320.a.100555._.A2413320.a.100555._.B2413320.a.100555._.C2413320.a.172380._.A2413320.a.172380._.B2413320.a.172380._.C2413320.a.185640._.A2413320.a.185640._.B2413320.a.201110._.A2413320.a.201110._.B2413320.a.201110._.C2413320.a.201110._.D2413320.a.201110._.E2413320.a.402220._.A2413320.a.402220._.B2413320.a.402220._.C2413320.a.603330._.A2413320.a.603330._.B2413320.a.603330._.C

Other information

Number of subgroups in this conjugacy class$14365$
Möbius function$2$
Projective image$\PSL(2,169)$