Subgroup ($H$) information
Description: | $D_7$ |
Order: | \(14\)\(\medspace = 2 \cdot 7 \) |
Index: | \(172380\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$\left[ \left(\begin{array}{rr}
31 & 137 \\
0 & 115
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
153 & 25 \\
112 & 161
\end{array}\right) \right]$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $\PSL(2,169)$ |
Order: | \(2413320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \) |
Exponent: | \(92820\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
Derived length: | $0$ |
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\PSL(2,169).C_2^2$, of order \(9653280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \) |
$\operatorname{Aut}(H)$ | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
$W$ | $D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $86190$ |
Möbius function | $0$ |
Projective image | $\PSL(2,169)$ |