Properties

Label 2413320.a.1206660.a1.a1
Order $ 2 $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(1206660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
Exponent: \(2\)
Generators: $\left[ \left(\begin{array}{rr} 31 & 137 \\ 0 & 115 \end{array}\right) \right]$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $\PSL(2,169)$
Order: \(2413320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
Exponent: \(92820\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,169).C_2^2$, of order \(9653280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_{84}$
Normalizer:$D_{84}$
Normal closure:$\PSL(2,169)$
Core:$C_1$
Minimal over-subgroups:$D_{17}$$D_{13}$$D_{13}$$C_{14}$$D_7$$D_7$$D_5$$C_6$$S_3$$S_3$$C_4$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$14365$
Möbius function$-252$
Projective image$\PSL(2,169)$