Properties

Label 23328.ha.1296.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{4} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(19,21)(20,22), (1,9,6)(2,3,15)(4,7,18)(5,8,17)(10,16,12)(11,13,14), (2,3,15)(10,16,12)(11,13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), the socle, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3^4:D_6\wr C_2$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times C_3^4:D_4$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_3^4.Q_8.C_6.C_2^4.C_2$
Outer Automorphisms: $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_3^4.C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_3^4.C_6^2.C_2$
Normalizer:$C_3^4:D_6\wr C_2$
Minimal over-subgroups:$C_3^2\times C_6$$C_3^2\times C_6$$C_3^2\times C_6$$C_3^2\times C_6$$C_3^2\times C_6$$C_3^2\times C_6$$C_3^2\times C_6$$C_6^2$$C_6^2$$C_6\times S_3$$C_6:S_3$$C_6^2$$C_3:C_{12}$
Maximal under-subgroups:$C_3^2$$C_6$$C_6$$C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed