Properties

Label 23328.ha.648.ec1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{3} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(4,5)(7,8)(10,13)(11,12)(14,16)(17,18)(20,22), (19,21)(20,22), (1,9,6)(2,3,15)(4,7,18)(5,8,17)(10,16,12)(11,13,14), (2,3,15)(10,16,12)(11,13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $C_3^4:D_6\wr C_2$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_3^4.C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_6^2$
Normalizer:$C_6^2:D_4$
Normal closure:$(C_3^2\times \He_3).D_6$
Core:$C_3\times C_6$
Minimal over-subgroups:$C_3^2\times D_6$$C_3^2\times D_6$$C_3^2\times D_6$$C_3^2\times D_6$$C_3^2\times D_6$$C_3^2\times D_6$$C_3^2\times D_6$$C_2\times C_6^2$$C_6\wr C_2$$C_6:D_6$
Maximal under-subgroups:$C_3\times C_6$$C_3\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$

Other information

Number of subgroups in this autjugacy class$81$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed