Subgroup ($H$) information
Description: | $C_6^2$ |
Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Index: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(4,5)(7,8)(10,13)(11,12)(14,16)(17,18)(20,22), (19,21)(20,22), (1,9,6)(2,3,15)(4,7,18)(5,8,17)(10,16,12)(11,13,14), (2,3,15)(10,16,12)(11,13,14)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.
Ambient group ($G$) information
Description: | $C_3^4:D_6\wr C_2$ |
Order: | \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^2.C_3^4.C_2^6.C_2^3$ |
$\operatorname{Aut}(H)$ | $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$\card{W}$ | \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $81$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | not computed |