Properties

Label 23328.ha.432.a1
Order $ 2 \cdot 3^{3} $
Index $ 2^{4} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times C_6$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(19,21)(20,22), (10,12,16)(11,13,14), (1,9,6)(2,3,15)(4,7,18)(5,8,17)(10,16,12)(11,13,14), (2,3,15)(10,16,12)(11,13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 3$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_3^4:D_6\wr C_2$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_3^4.C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$\card{W}$\(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$\He_3\times C_6^2$
Normalizer:$C_2^2\times (C_3^2\times \He_3).D_6$
Normal closure:$C_3^3\times C_6$
Core:$C_3\times C_6$
Minimal over-subgroups:$C_3^3\times C_6$$C_3^3\times C_6$$C_6\times \He_3$$C_6\times \He_3$$C_6\times \He_3$$C_6\times \He_3$$C_3^3\times C_6$$C_3\times C_6^2$$C_3^2\times D_6$$C_3^2:D_6$$C_3^2:D_6$$C_3^2\times D_6$
Maximal under-subgroups:$C_3^3$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed