Properties

Label 2310.18.55.a1.a1
Order $ 2 \cdot 3 \cdot 7 $
Index $ 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{21}$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Index: \(55\)\(\medspace = 5 \cdot 11 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $a, b^{330}, b^{385}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{11}\times D_{105}$
Order: \(2310\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(2310\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}\times F_5\times S_3\times F_7$
$\operatorname{Aut}(H)$ $S_3\times F_7$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$S_3\times F_7$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$D_{21}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_{11}$
Normalizer:$C_{11}\times D_{21}$
Normal closure:$D_{105}$
Core:$C_{21}$
Minimal over-subgroups:$C_{11}\times D_{21}$$D_{105}$
Maximal under-subgroups:$C_{21}$$D_7$$S_3$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$C_{11}\times D_{105}$