Properties

Label 2310.18.210.a1.a1
Order $ 11 $
Index $ 2 \cdot 3 \cdot 5 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}$
Order: \(11\)
Index: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(11\)
Generators: $b^{105}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $11$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{11}\times D_{105}$
Order: \(2310\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(2310\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $D_{105}$
Order: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Automorphism Group: $S_3\times F_5\times F_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Outer Automorphisms: $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}\times F_5\times S_3\times F_7$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{11}\times D_{105}$
Normalizer:$C_{11}\times D_{105}$
Complements:$D_{105}$
Minimal over-subgroups:$C_{77}$$C_{55}$$C_{33}$$C_{22}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$105$
Projective image$D_{105}$