Properties

Label 2250.i.6.a1.a1
Order $ 3 \cdot 5^{3} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2\times C_{15}$
Order: \(375\)\(\medspace = 3 \cdot 5^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $d^{10}, c, d^{3}, b$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), the Fitting subgroup (hence nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, abelian (hence metabelian and an A-group), and elementary for $p = 5$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_5^2:(C_3\times D_{15})$
Order: \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.(C_6\times C_{12}).C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_4.\PSL(3,5)$
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times C_8:D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(375\)\(\medspace = 3 \cdot 5^{3} \)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_5^2\times C_{15}$
Normalizer:$C_5^2:(C_3\times D_{15})$
Complements:$C_6$
Minimal over-subgroups:$C_5^3:C_3^2$$C_5^2:D_{15}$
Maximal under-subgroups:$C_5^3$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$

Other information

Möbius function$1$
Projective image$C_5^2:(C_3\times D_{15})$