Subgroup ($H$) information
| Description: | $C_5^3:C_3^2$ |
| Order: | \(1125\)\(\medspace = 3^{2} \cdot 5^{3} \) |
| Index: | \(2\) |
| Exponent: | \(15\)\(\medspace = 3 \cdot 5 \) |
| Generators: |
$a^{2}, d^{3}, bc, d^{10}, c$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_5^2:(C_3\times D_{15})$ |
| Order: | \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5^3.(C_6\times C_{12}).C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_4\times C_5^2.(C_{24}\times S_3).C_2$ |
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(15\)\(\medspace = 3 \cdot 5 \) |
| $W$ | $C_5^2:C_6$, of order \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $C_5^2:(C_3\times D_{15})$ |