Properties

Label 2250.i.2.a1.a1
Order $ 3^{2} \cdot 5^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:C_3^2$
Order: \(1125\)\(\medspace = 3^{2} \cdot 5^{3} \)
Index: \(2\)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $a^{2}, d^{3}, bc, d^{10}, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5^2:(C_3\times D_{15})$
Order: \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.(C_6\times C_{12}).C_2^4$
$\operatorname{Aut}(H)$ $C_4\times C_5^2.(C_{24}\times S_3).C_2$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(15\)\(\medspace = 3 \cdot 5 \)
$W$$C_5^2:C_6$, of order \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_5^2:(C_3\times D_{15})$
Complements:$C_2$
Minimal over-subgroups:$C_5^2:(C_3\times D_{15})$
Maximal under-subgroups:$C_5^2\times C_{15}$$C_5\wr C_3$$C_5\wr C_3$$C_5^2:C_3^2$$C_3\times C_{15}$

Other information

Möbius function$-1$
Projective image$C_5^2:(C_3\times D_{15})$