Properties

Label 222336.a.9.a1.a1
Order $ 2^{7} \cdot 193 $
Index $ 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{386}:C_{64}$
Order: \(24704\)\(\medspace = 2^{7} \cdot 193 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Generators: $a^{24}, b^{6}, a^{96}, a^{48}, a^{12}, a^{3}, b^{579}, a^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_6\times F_{193}$
Order: \(222336\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Exponent: \(3\)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{579}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6\times F_{193}$
Complements:$C_3^2$
Minimal over-subgroups:$C_{1158}:C_{64}$$C_2\times F_{193}$$C_2\times F_{193}$$C_2\times F_{193}$
Maximal under-subgroups:$C_{386}:C_{32}$$C_{193}:C_{64}$$C_{193}:C_{64}$$C_2\times C_{64}$

Other information

Möbius function$3$
Projective image$C_3\times F_{193}$