Properties

Label 222336.a.1.a1.a1
Order $ 2^{7} \cdot 3^{2} \cdot 193 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times F_{193}$
Order: \(222336\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 193 \)
Index: $1$
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Generators: $a^{96}, b^{6}, b^{386}, b^{579}, a^{3}, a^{64}, a^{48}, a^{6}, a^{12}, a^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, metacyclic (hence supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_6\times F_{193}$
Order: \(222336\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{579}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $C_{579}.C_{96}.C_2^3$
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6\times F_{193}$
Complements:$C_1$
Maximal under-subgroups:$C_{1158}:C_{96}$$C_3\times F_{193}$$C_3\times F_{193}$$C_{1158}:C_{64}$$C_2\times F_{193}$$C_2\times F_{193}$$C_2\times F_{193}$$C_6\times C_{192}$

Other information

Möbius function$1$
Projective image$F_{193}$