Properties

Label 21600.y.60.e1.b1
Order $ 2^{3} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times A_5$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,3), (2,3,4), (1,5,13)(2,4,3)(7,10,8), (2,3)(5,12)(6,8)(7,9)(11,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $S_3\times A_5^2$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5^2:D_6$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_3\times S_5$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
$W$$S_3\times A_5$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3\times A_5$
Normal closure:$S_3\times A_5^2$
Core:$S_3$
Minimal over-subgroups:$S_3\times A_5^2$
Maximal under-subgroups:$\GL(2,4)$$C_2\times A_5$$S_3\times A_4$$S_3\times D_5$$S_3^2$
Autjugate subgroups:21600.y.60.e1.a1

Other information

Number of subgroups in this conjugacy class$60$
Möbius function$-1$
Projective image$S_3\times A_5^2$