Properties

Label 21600.y.1.a1.a1
Order $ 2^{5} \cdot 3^{3} \cdot 5^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times A_5^2$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Index: $1$
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,3), (1,5,11,12,13)(3,4)(6,9,7,10,8), (2,3,4), (2,3)(5,12)(6,9)(7,10)(11,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $S_3\times A_5^2$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5^2:D_6$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_5^2:D_6$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
$W$$S_3\times A_5^2$, of order \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3\times A_5^2$
Complements:$C_1$
Maximal under-subgroups:$A_5\times \GL(2,4)$$C_2\times A_5^2$$S_3\times A_4\times A_5$$S_3\times A_4\times A_5$$\GL(2,4):D_{10}$$\GL(2,4):D_{10}$$S_3^2\times A_5$$S_3^2\times A_5$$S_3\times A_5$$S_3\times A_5$

Other information

Möbius function$1$
Projective image$S_3\times A_5^2$