Properties

Label 21600.bg.6.a1.a1
Order $ 2^{4} \cdot 3^{2} \cdot 5^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times A_6$
Order: \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,4)(2,3), (5,7,8,6,9), (1,4)(2,3)(5,8,9,7,6)(10,11)(12,13), (5,6,7,9,8)(10,15,12,11)(13,14)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_5\times A_4\times A_6$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_4\times S_6:C_2$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$W$$A_6$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_2\times C_{10}\times A_6$
Normal closure:$C_2\times C_{10}\times A_6$
Core:$C_5\times A_6$
Minimal over-subgroups:$C_2\times C_{10}\times A_6$
Maximal under-subgroups:$C_5\times A_6$$C_2\times A_6$$C_{10}\times A_5$$C_{10}\times A_5$$C_2\times C_3^2:C_{20}$$C_{10}\times S_4$$C_{10}\times S_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$A_4\times A_6$