Properties

Label 21600.bg.60.b1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^2:C_{20}$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,4)(2,3)(5,9,6,8,7)(10,13,12)(11,14,15), (1,4)(2,3), (1,4)(2,3)(10,12,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5\times A_4\times A_6$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_4\times F_9:C_2^2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$W$$C_3^2:C_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_6^2:C_{20}$
Normal closure:$C_2\times C_{10}\times A_6$
Core:$C_5$
Minimal over-subgroups:$C_{10}\times A_6$$C_6^2:C_{20}$
Maximal under-subgroups:$C_{30}:S_3$$C_3^2:C_{20}$$C_3^2:C_{20}$$C_2\times C_3^2:C_4$$C_2\times C_{20}$

Other information

Number of subgroups in this conjugacy class$30$
Möbius function$0$
Projective image$A_4\times A_6$