Properties

Label 21600.bg.4.a1.a1
Order $ 2^{3} \cdot 3^{3} \cdot 5^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}\times A_6$
Order: \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(5,8,9,7,6)(10,11)(12,13), (1,4,2)(5,6,7,9,8)(10,15,12,11)(13,14), (1,4,2), (5,7,8,6,9)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_5\times A_4\times A_6$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_2\times C_4\times A_6.C_2^2$
$W$$A_6$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_{15}\times A_6$
Normal closure:$C_5\times A_4\times A_6$
Core:$C_5\times A_6$
Minimal over-subgroups:$C_5\times A_4\times A_6$
Maximal under-subgroups:$C_5\times A_6$$C_3\times A_6$$C_{15}\times A_5$$C_{15}\times A_5$$C_3^2:C_{60}$$C_{15}\times S_4$$C_{15}\times S_4$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-1$
Projective image$A_4\times A_6$