Properties

Label 21600.bg.160.a1.a1
Order $ 3^{3} \cdot 5 $
Index $ 2^{5} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times C_{15}$
Order: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Index: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $\langle(1,2,3), (1,2,3)(5,9,6,8,7)(10,13,12)(11,14,15), (10,12,13)(11,14,15), (5,7,8,6,9)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 3$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_5\times A_4\times A_6$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_4\times \GL(3,3)$, of order \(44928\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 13 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_3^2\times C_{15}$
Normalizer:$C_3^2:C_{60}$
Normal closure:$C_5\times A_4\times A_6$
Core:$C_5$
Minimal over-subgroups:$C_6^2:C_{15}$$C_3^2:C_{30}$
Maximal under-subgroups:$C_3\times C_{15}$$C_3\times C_{15}$$C_3\times C_{15}$$C_3\times C_{15}$$C_3\times C_{15}$$C_3^3$

Other information

Number of subgroups in this conjugacy class$40$
Möbius function$0$
Projective image$A_4\times A_6$