Properties

Label 21600.bg.800.a1.a1
Order $ 3^{3} $
Index $ 2^{5} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(3\)
Generators: $\langle(1,2,3), (1,2,3)(10,13,12)(11,14,15), (10,12,13)(11,14,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_5\times A_4\times A_6$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_3^2\times C_{15}$
Normalizer:$C_3^2:C_{60}$
Normal closure:$A_4\times A_6$
Core:$C_1$
Minimal over-subgroups:$C_3^2\times C_{15}$$C_3^2\times A_4$$C_3^2:C_6$
Maximal under-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$

Other information

Number of subgroups in this conjugacy class$40$
Möbius function$0$
Projective image$C_5\times A_4\times A_6$