Properties

Label 200.23.4.a1.a1
Order $ 2 \cdot 5^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{10}$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $b^{10}, c, b^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, abelian (hence metabelian and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{10}.D_{10}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5^2:D_4$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_5\times C_{10}$
Normalizer:$C_{10}.D_{10}$
Minimal over-subgroups:$C_5:D_{10}$$C_5:C_{20}$$C_5:C_{20}$
Maximal under-subgroups:$C_5^2$$C_{10}$$C_{10}$$C_{10}$$C_{10}$

Other information

Möbius function$2$
Projective image$D_5^2$