Properties

Label 200.23.2.b1.a1
Order $ 2^{2} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:C_{20}$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $b^{5}, b^{10}, c, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{10}.D_{10}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5^2:D_4$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\operatorname{res}(S)$$C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{10}.D_{10}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_{10}.D_{10}$
Maximal under-subgroups:$C_5\times C_{10}$$C_5:C_4$$C_{20}$
Autjugate subgroups:200.23.2.b1.b1

Other information

Möbius function$-1$
Projective image$D_5^2$