Properties

Label 19440.bb.15.a1.b1
Order $ 2^{4} \cdot 3^{4} $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(7,8,9)(10,12,11), (1,3)(2,4)(7,15,8,14,9,13)(10,11), (2,4)(5,6)(10,12,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^2:C_6\times A_6$
Order: \(19440\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.S_3^2.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_3^2:D_6\times S_4$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$W$$C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_6^2:S_3^2$
Normal closure:$C_3^2:C_6\times A_6$
Core:$C_3^2:C_6$
Minimal over-subgroups:$C_3^2:C_6\times A_6$
Maximal under-subgroups:$A_4\times C_3^2:C_6$$\He_3:S_4$$S_4\times \He_3$$C_6^2:D_6$$C_6^2:D_6$$C_6^2:D_6$$C_3^2:S_3^2$
Autjugate subgroups:19440.bb.15.a1.a1

Other information

Number of subgroups in this conjugacy class$15$
Möbius function$-1$
Projective image$C_3^2:C_6\times A_6$