Subgroup ($H$) information
Description: | $C_6^2:S_3^2$ |
Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Index: | \(15\)\(\medspace = 3 \cdot 5 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(7,8,9)(10,12,11), (2,4)(5,6)(10,12,11)(13,14,15), (7,12,14)(8,10,15)(9,11,13) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is maximal, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_3^2:C_6\times A_6$ |
Order: | \(19440\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3.S_3^2.A_6.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_3^2:D_6\times S_4$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
$W$ | $C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $15$ |
Möbius function | $-1$ |
Projective image | $C_3^2:C_6\times A_6$ |