Properties

Label 19360.h.8.e1.b1
Order $ 2^{2} \cdot 5 \cdot 11^{2} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:C_{20}$
Order: \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}bc^{5}d^{30}, d^{22}, c, a^{2}, d^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_2^3.C_5.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times F_{11}^2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
$W$$D_{22}:F_{11}$, of order \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{11}:(Q_8\times F_{11})$
Normal closure:$C_{11}^2:(C_5\times Q_8)$
Core:$C_{11}^2:C_{10}$
Minimal over-subgroups:$C_{11}^2:(C_5\times Q_8)$$C_{11}:(C_4\times F_{11})$$C_{44}.F_{11}$
Maximal under-subgroups:$C_{11}^2:C_{10}$$C_{11}:C_{44}$$C_{11}:C_{20}$$C_{11}:C_{20}$
Autjugate subgroups:19360.h.8.e1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2\times D_{11}^2:C_{10}$