Subgroup ($H$) information
| Description: | $C_{11}^2:C_{20}$ |
| Order: | \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Generators: |
$a^{5}bc^{5}d^{30}, d^{22}, c, a^{2}, d^{4}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{11}^2:(C_{10}\times \SD_{16})$ |
| Order: | \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \) |
| Exponent: | \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{11}^2.C_2^3.C_5.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2\times F_{11}^2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \) |
| $W$ | $D_{22}:F_{11}$, of order \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $C_2\times D_{11}^2:C_{10}$ |