Properties

Label 19360.h.2.c1.a1
Order $ 2^{4} \cdot 5 \cdot 11^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:(Q_8\times F_{11})$
Order: \(9680\)\(\medspace = 2^{4} \cdot 5 \cdot 11^{2} \)
Index: \(2\)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}bc^{5}d^{30}, c, b^{2}c, a^{2}, d^{11}, d^{4}, d^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_2^3.C_5.C_2^5$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{10}^2.C_2^5$
$W$$C_2\times D_{11}^2:C_{10}$, of order \(9680\)\(\medspace = 2^{4} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{11}^2:(C_{10}\times \SD_{16})$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_{11}^2:(C_{10}\times \SD_{16})$
Maximal under-subgroups:$C_{44}:F_{11}$$C_{11}^2:(C_5\times Q_8)$$C_{11}^2:(C_5\times Q_8)$$C_{11}:(C_4\times F_{11})$$C_{44}.F_{11}$$C_{44}.D_{22}$$Q_8\times F_{11}$

Other information

Möbius function$-1$
Projective image$C_2\times D_{11}^2:C_{10}$